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Abstract. A method of truncated codifferential descent for minimizing continuously codifferentiable
functions is suggested. The convergence of the method is studied. Results of numerical experiments
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analysis are discussed. In numerical experiments Wisconsin Diagnostic Breast Cancer database was
used.
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1. Introduction

A mathematical formalization of one of the main problems of cluster analysis leads
to the following global optimization problem: for a given set of points ai ∈ R

n, i =
1, . . . , m find a collection x̄ = (x̄1, . . . , x̄p) of p n-dimensional vectors, which is
a solution of the following problem:

f (x1, . . . , xp) =
m∑
i=1

min
l=1,... ,p

‖xl − ai‖ −→ min subject to

xl ∈ S ⊂ R
n, l = 1, . . . , p, (1)

where S is a compact convex set in R
n. As a rule m is a large number and p is

substantially less than m.
The objective function in (1) is a DC function (see, for example, Tuy, 1998),

that is, f can be represented as the difference of two convex functions. In fact

f (x) =
m∑
i=1

p∑
l=1

‖xl − ai‖ −
m∑
i=1

max
r

∑
l �=r

‖xl − ai‖. (2)

Since f is a DC function it follows that f is continuously codifferentiable. (For
definition and properties of codifferentiable functions see Demyanov and Rubinov
(1995) and also Section 2 below.) There are many continuous codifferentials for
the function f at a point x. Starting from the functions xl 	→ ‖xl − ai‖ and
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using method of codifferential calculus (Demyanov and Rubinov, 1995), we can
easily give an explicit formula for the calculation of one of them. This codiffer-
ential can be called the complete codifferential. The construction of the complete
codifferential requires some operations with polytopes in the n-dimensional space,
the number of these polytopes depends on m and p. When the number m is large
enough the calculation of the complete codifferential is too complicated. We show
that different kinds of codifferentials can be constructed for the function (2). These
codifferentials appear as truncations of the complete codifferential and we shall
call them truncated codifferentials. It can be shown that a truncated codifferential
of the function f at a point x is continuous only in some neighbourhood of x,
so the known methods of minimization using continuous codifferentials cannot be
directly applied in the case under consideration.

The codifferential descent method for the search for a local minimum was
introduced and studied in Demyanov and Rubinov (1990) (see, also Demyanov
and Rubinov, 1995). The results of Bagirov (2000) show that the version of this
method, based on a continuous codifferential, is efficient for the minimization of
DC functions and it has advantage over methods based on the quasidifferential
mapping (Demyanov et al., 1986, 1996; Hiriart-Urruty, 1989; Kiwiel, 1986).

It should be noted that proofs of the convergence of the majority of methods
of nonsmooth optimization are based only on some kinds of upper semicontinuity
of the approximate set-valued mappings which are used for the construction of
corresponding methods (see, for example, Polak et al., 1983; Polak and Mayne,
1985). However, computational experience shows that as a rule numerical methods
based on the Hausdorff continuous mappings work better than methods employing
the mappings which are only upper semicontinuous. For instance, we can refer to
various versions of the bundle method for convex functions, which exploit the ε -
subdifferential mapping (see Hiriart-Urruty and Lemarechal, 1993a,b).

The continuity of the truncated codifferential in some neighbourhood of a cur-
rent point is also useful for the application of numerical methods based on this
codifferential. In this paper we study a modification of the codifferential descent
method, by assuming only this kind of continuity. In particular, we suggest a trun-
cated codifferential descent method. The convergence of the method is studied.
A number of numerical tests have been carried out. The results of these exper-
iments are presented. We give an example which demonstrates that the codif-
ferential descent method sometimes allows ‘to jump over’ some local minima
points.

We shall discuss a possible application of the proposed method to the solution of
the problem (1). We need to find a global minimizer of this problem. Proposed trun-
cated codifferential descent, which is based on a local approximation, allows one to
find only inf-stationary points. However a combination of this method with some
known methods of global optimization (in particular with cutting angle method
(Andramonov et al., 1999; Bagirov and Rubinov, 2000)) essentially reduces the
computational time and is very useful for solving problem (1). We do not dis-
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cuss such type of combinations in this paper. We use the well-known Wisconsin
Diagnostic Breast Cancer database for numerical experiments. These experiments
show that even the proposed local method, without any global search, leads to very
good results, which are very close to the results obtained by the global cutting
angle method (Bagirov et al., 1999). However, the computational time for the local
method is substantially less than for the global one.

The paper has the following structure. Section 2 provides some preliminaries.
In Section 3 a method of truncated codifferential descent is described and its con-
vergence is studied. Results of numerical experiments are presented in Section 4.
In Section 5 we give results of application of the method for the solution of cluster
analysis problems. Section 6 concludes the paper.

2. Quasidifferentiable and codifferentiable functions

Consider a locally Lipschitz function f defined on an open set X ⊂ R
n. Assume

that f is directionally differentiable at each point x ∈ X, that is there exists the
finite limit

f ′(x, g) = lim
α↓0

f (x + αg)− f (x)

α
. (3)

The value f ′(x, g) is called the directional derivative of f at the point x in the
direction g. The function f : X → R is called quasidifferentiable at a point x ∈ X

if it is directionally differentiable at x and if its directional derivative is of the form

f ′(x, g) = max
v∈∂f (x)

(v, g)+ min
w∈∂f (x)

(w, g)

where ∂f (x) and ∂f (x) ⊂ R
n are compact convex sets. The pair Df (x) =

[∂f (x), ∂f (x)] is called the quasidifferential of f at x (the set ∂f being called
the subdifferential and the set ∂f the superdifferential).

The quasidifferential mapping Df is essentially discontinuous (in the Haus-
dorff metric) at a point of the nondifferentiability of f , therefore special precau-
tions are to be taken to guarantee the convergence.

To overcome the mentioned drawback we shall employ the notion of codiffer-
entiable function.

A function f : X → R is called codifferentiable at a point x ∈ X if there exist
compact convex sets df (x) ⊂ R

n+1 and df (x) ⊂ R
n+1 such that the following

expansion holds

f (x +�) =f (x) + max
[a,v]∈df (x)

[a + (v,�)]
+ min

[b,w]∈df (x)
[b + (w,�)] + o(x,�) (4)

where o(x,�)

‖�‖ −→0 as ‖�‖ → 0.
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The pair Df (x) = [df (x), df (x)] is called the codifferential of f at x, df (x)
being called the hypodifferential and df (x) the hyperdifferential. The properties
of codifferentiable functions are discussed, e.g., in Demyanov and Rubinov (1990,
1995). The codifferential mapping Df (as well as the quasidifferential one) is
not uniquely defined. A function f is called continuously codifferentiable at a
point x ∈ X if it is codifferentiable in a neighbourhood of x and if there exists
a codifferential mapping Df which is Hausdorff continuous at the point x.

The class of codifferentiable functions is quite rich and enjoys a full-scale
calculus which is a generalization of the classical differential calculus.

Without loss of generality we may assume that

max
[a,v]∈df (x)

a = min
[b,w]∈df (x)

b = 0.

It is easy to see that the classes of codifferentiable and quasidifferentiable functions
coincide. In particular, if Df (x) = [df (x), df (x)] is a codifferential of f at x,
then the pair

Df (x) = [∂f (x), ∂f (x)],
where

∂f (x) = {v ∈ R
n | [0, v] ∈ df (x)}, ∂f (x) = {w ∈ R

n | [0, w] ∈ df (x)},
is a quasidifferential of f at x.

Necessary optimality conditions can be formulated in terms of the codifferen-
tial:
for a point x∗ ∈ X to be a (local) minimizer of f on X it is necessary that

0n+1 ∈ [w + df (x∗)] ∀w = [0, w] ∈ df (x∗). (5)

A point x∗ ∈ X satisfying (5) is called an inf-stationary point of f .
If a point x0 ∈ X is not inf-stationary, then it is possible to find descent direc-

tions at this point in terms of hypo- and hyperdifferentials.
Though the classes of codifferentiable and quasidifferentiable functions coin-

side, the usage of the codifferentiability instead of the quasidifferentiability makes
it possible to single out the subclass of continuously codifferentiable functions
(which doesn’t coincide with the class of arbitrary codifferentiable functions). It
turns on that most known nonsmooth functions are continuously codifferentiable.

In Demyanov and Rubinov (1990, 1995) the method of codifferential descent
(CDD-method) was described for finding inf-stationary points of a continuously
codifferentiable function. The efficiency of this method and its applicability to
solving optimization problems heavily depends on the continuous codifferential
mapping which is being employed. In the following section we describe a modi-
fication of the CDD-method where a locally continuous codifferential mapping is
used to construct a descent direction at each step.
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3. A method of truncated codifferential descent

Let a function f be defined, locally Lipschitz and continuously codifferentiable on
an open set X ⊂ R

n. We shall consider only functions f such that for every x ∈ X

there exists a mapping Dxf = [dxf, dxf ] with the following property:

f (y +�) =f (y) + max
[a,v]∈dxf (y)

[a + (v,�)]
+ min

[b,w]∈dxf (y)
[b + (w,�)] + ox(y,�) (6)

where dxf (y), dxf (y) ⊂ R
n+1 are convex compact sets, the mapping Dxf is

Hausdorff continuous in y on Sδ(x) = {x′ ∈ R
n

∣∣ ||x − x′|| < δ} (with δ > 0 the
same for all x ∈ X),

ox(y,�)

‖�‖ −→ 0 as ‖�‖ → 0 (7)

uniformly with respect to y ∈ Sδ(x) and x ∈ X.
First we consider a broad class of functions f such that the mapping Dxf with

the required properties does exist. Let

f1(x) = max
i∈I

ϕi(x), f2(x) = min
j∈J ψj (x)

and

f (x) = f1(x) + f2(x) = max
i∈I

ϕi(x) + min
j∈J

ψj (x). (8)

Here ϕi(i ∈ I ) and ψj(j ∈ J ) are continuously differentiable on some open set
X ⊂ R

n, I and J are finite index sets. Since

f (x +�) =f (x) + max
i∈I

(ϕi(x +�)− f1(x)) + min
j∈J

(ψj (x +�)− f2(x))

=f (x) + max
i∈I

[ϕi(x) − f1(x) + (ϕ′
i(x),�)]

+ min
j∈J

[ψj(x) − f2(x) + (ψ ′
j (x),�)] + o(x,�)

then the mapping

Df (x) = [df (x), df (x)] (9)

with

df (x) = co{[ai, vi] | ai = ϕi(x) − f1(x), vi = ϕ′
i (x), i ∈ I }, (10)

df (x) = co{[bj ,wj ] | bj = ψj(x) − f2(x), wj = ψ ′
j (x), j ∈ J } (11)



68 V.F. DEMYANOV ET AL.

is a codifferential mapping for the function f defined by (8). This mapping is Haus-
dorff continuous on X. We shall call the mapping Df the complete codifferential
mapping of f .

Fix ε > 0, µ > 0 and put

Rε(x) = {i ∈ I | ∃y ∈ Sδ(x) : ϕi(y) � f1(y) − ε},

Qµ(x) = {j ∈ J | ∃y ∈ Sδ(x) : ϕj (y) � f2(y) + µ}.
The mapping

Dxf (y) = [dxf (y), dxf (y)] (12)

with

dxf (y) = co{[ai, vi] | ai = ϕi(y) − f1(y), vi = ϕ′
i(y), i ∈ Rε(x)}, (13)

dxf (y) = co{[bj ,wj ] | bj = ψj(y) − f2(y), wj = ψ ′
j (y), j ∈ Qµ(x)}

(14)

is a codifferential mapping for f .

PROPOSITION 3.1. The mapping Dxf defined by (12) - (14) is Hausdorff con-
tinuous in y in a neighbourhood of the point x and possesses the property (6).

Proof. The Hausdorff continuity of the mapping Dxf follows immediately from
its definition and continuously differentiability of the functions ϕi(i ∈ I ) and
ψj(j ∈ J ). Let us prove that this mapping possesses the property (6). Let y, y +
� ∈ Sδ(x). Then we have

f (y +�) =f (y) + max
i∈I

(ϕi(y +�)− f1(y)) + min
j∈J (ψj (y +�)− f2(y))

=f (y) + max
i∈Rε(x)

(ϕi(y +�) − f1(y))

+ min
j∈Qµ(x)

(ψj (y +�)− f2(y))

=f (y) + max
i∈Rε(x)

[ϕi(y) − f1(y) + (ϕ′
i(y),�)]

+ min
j∈Qµ(x)

[ψj(y) − f2(y) + (ψ ′
j (y),�)] + ox(y,�)

=f (y) + max
[a,v]∈dxf (y)

[a + (v,�)]
+ min

[b,w]∈dxf (y)
[b + (w,�)] + ox(y,�). �

We shall call the mapping Dxf (y) defined by (12)–(14) a truncated codifferen-
tial mapping or an (ε, µ)-truncated codifferential mapping.
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REMARK 3.1. It can be shown that the function

f (x) = max
i∈I

min
j∈Ji

fij (x), (15)

where I and Ji(i ∈ I ) are finite index sets, and functions fij (i ∈ I, j ∈ Ji) are
continuously differentiable on some open set X ⊂ R

n, can also be presented in
the form (8) (with different, of course, I and J ) and therefore for this function we
can construct a continuous codifferential mapping and a truncated codifferential
mapping which is locally Hausdorff continuous.

REMARK 3.2. A truncated codifferential can also be considered for the function
(2). For its computation we can use the same technique as for (8). Computational
efforts depend on the chosen norm. For the 2-norm the truncated codifferential is
simpler than for 1-norm. The computation of truncated codifferential for (2) with
the 1-norm is possible only for small p.

Consider a locally Lipschitz continuously codifferentiable function f defined
on an open set X ⊂ R

n. Assume that for each x ∈ X there exists a mapping Dxf =
[dxf, d̄xf ],which possesses the property (6). The pair Dxf (y) = [∂xf (y), ∂xf (y)]
where

∂xf (y) = {v | [0, v] ∈ dxf (y)}, ∂xf (y) = {w | [0, w] ∈ dxf (y)}
is a quasidifferential of f at y. We shall assume that

Dxf (y) = Df (y) ∀y ∈ Sδ(x). (16)

We also assume that

max
[a,v]∈dxf (y)

a = min
[b,w]∈dxf (y)

b = 0, ∀x ∈ X, ∀y ∈ Sδ(x). (17)

REMARK 3.3. The assumptions (16) and (17) hold for a broad class of functions.
For example, it follows from the definition of the truncated codifferential that they
hold for the functions defined by (8).

If x∗ ∈ X is a minimizer of f then the necessary condition for a minimum (5)
takes the form

0n+1 ∈ {dxf (x∗)+ [0, w]} ∀[0, w] ∈ dxf (x
∗), ∀x ∈ Sδ(x

∗). (18)

Assume that condition (18) does not hold at a point x ∈ X. Then there exists a
wx = [0, wx] ∈ dxf (x) such that

0n+1 /∈ {dxf (x)+ wx} ≡ Lwx
(x). (19)

Find

min
z∈Lwx (x)

‖z‖ = ‖zwx
(x)‖.
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It follows from (19) that

zwx
(x) = [ηwx

(x), zwx
(x)] �= 0n+1.

As in proof of Theorem V.4.1 Demyanov and Rubinov (1995) we conclude that
zwx

(x) �= 0n and that for the direction

gwx
(x) = −zwx

(x)/‖zwx
(x)‖

the following inequality holds:

f ′(x, gwx
(x)) � −‖zwx

(x)‖.
Now let us describe the following algorithm:

Fix any µ > 0. Choose an arbitrary x0 ∈ R
n. Let xk have already been found.

If condition (18) holds at the point xk, i.e.

0n+1 ∈ {dxkf (xk)+ [0, w]} ∀[0, w] ∈ dxkf (xk), (20)

then xk is an inf-stationary point and the process terminates. Otherwise, for every
w ∈ dµxkf (xk) where

dµxf (x) = {w ∈ dxf (x) | w = (ω,w), 0 � ω � µ} (21)

we find

min
z∈Lw(xk)

‖z‖ = ‖zkw‖, (22)

where

zkw = [ηkw, zkw], Lw(xk) = dxkf (xk)+ w.

It follows from (6) that

f (xk − αzkw) � f (xk)+ max
[a,v]∈dxk f (xk)

[(a + ω)− α(v + w, zkw)] + o(α).

(23)

We have from (22)

(z,−zkw) � −‖zkw‖2 ∀z ∈ Lw(xk), (24)

i.e.

(a + ω)(−ηkw)− (v + w, zkw) � −‖zkw‖2 (25)

or

−(v + w, zkw) � −‖zkw‖2 + (a + ω)ηkw ∀[a, v] ∈ dxkf (xk).
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The inequalities (23) and (25) imply

f (xk − αzkw) � f (xk)+ max
[a,v]∈dxk f (xk)

[(a + ω)− α‖zkw‖2

+ α(a + ω)ηkw] + ok(α) (26)

= f (xk)− α‖zkw‖2 + max
[a,v]∈dxk f (xk)

[(a + ω)(1 + αηkw)] + ok(α).

For sufficiently small α � 0 we have (1 + αηkw) > 0, thus (26) yields

f (xk − αzkw) � f (xk)− α‖zkw‖2 + (1 + αηkw) max
[a,v]∈dxk f (xk)

(a + ω)+ ok(α)

= f (xk)− α‖zkw‖2 + (1 + αηkw)ω + ok(α). (27)

Note that here ω ∈ [0, µ], therefore it may happen that the direction −zkw is not a
descent direction (even if ‖zkw‖ > 0). However, since condition (18) does not hold
at the point xk, then there exists at least one w0 ∈ ∂xkf (xk) such that ‖zkw0‖ > 0,
hence (in this case ω0 = 0) the direction −zkw0 is (see (27)) a descent direction.

Now, for every w ∈ dµxkf (xk) we find

min
α>0

f (xk − αzkw) = f (xk − αkwzkw) (28)

and then

min
w∈dµxk f (xk)

f (xk − αkwzkw) = f (xk − αkwk
zkwk

). (29)

Put xk+1 = xk −αkwk
zkwk

. Continuing in the same manner we construct a sequence
{xk} such that

f (xk+1) < f (xk). (30)

THEOREM 3.1. Let the set

P ≡ {x ∈ X | f (x) � f (x0)} (31)

be bounded and x∗ be a limit point of the sequence {xk}. Then the point x∗ is an
inf-stationary point of the function f on X (i.e. condition (18) holds).

Proof. The existence of limit points of the sequence {xk} follows from the com-
pactness of the set (31) and from (30). Let xks → x∗. Assume that condition (18)
does not hold at x∗, i.e. x∗ is not a stationary point of f . At the point x∗ we have the
family of codifferentials {Dxf (x

∗) | x ∈ Sδ(x
∗)}, however, all quasidifferentials

Dxf (x
∗) = [∂xf (x∗), ∂xf (x∗)]

where

∂xf (x
∗) = {v ∈ R

n | [0, v] ∈ dxf (x
∗)},
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∂xf (x
∗) = {w ∈ R

n | [0, w] ∈ dxf (x
∗)}

are equivalent (see Demyanov and Rubinov (1999, 1995)). Since x∗ is not a sta-
tionary point then there exists a c > 0 such that

max
w∈∂xf (x∗)

min
v∈∂xf (x∗)

‖v + w‖ = ‖v∗ + w∗‖ = c > 0 ∀x ∈ Sδ(x
∗). (32)

Taking into account the uniform (with respect to x ∈ Sδ(x
∗)) continuity of Dxf (y)

we can claim that there exists a neighbourhood of x∗ (without loss of generality we
again denote this neighbourhood by Sδ(x

∗)) and a vector-function wx defined on
Sδ(x

∗) such that

min
z∈L(x)

‖z‖ = ‖zwx
(x)‖ � c/2 ∀x ∈ Sδ(x

∗)

where

L(x) = wx + dxf (x), wx = [ωx,wx] ∈ dxf (x),

ωx → 0, wx → w∗ as x → x∗.

Due to the continuity of the codifferential mapping there must exist a sequence
{wks } such that

wks = [ωks , wks ] ∈ dµxks f (xks ), ωks → 0, wks → w as ks → ∞.

We have (see (22)) zks = [ηks , zks ], and we may assume ‖zks‖ � c/4 > 0.
It follows from the properties of the function o(x,�) (see (7)) and (27) that

there exists an α0 > 0 such that for sufficiently large ks

f (xks − α0zks ) � f (xks )− α0c

8
+ 2ωks .

Since ωks → 0, then, for sufficiently large ks ,

f (xks − α0zks ) � f (xks )− α0c

16
.

Moreover,

f (xks+1) � f (xks )− α0c

16
.

Therefore from (30) we have f (xk) → −∞, which contradicts the boundedness
of the continuous function f on the bounded closed set P (see (31)). �
REMARK 3.4. It is assumed that the one-dimensional minimization problem in
(28) is solved exactly. To find the exact solution of (28) is a very complicated
problem in many instances. Therefore below we use the well-known Armijo rule
(see Armijo, 1966) for the estimation of the stepsize in numerical experiments. Let
c, σ ∈ (0, 1) be a given numbers. The stepsize αkw is defined as follows:

αkw = argmax{σ i | f (xk − σ izkw)− f (xk) � −cσ i‖zkw‖2}. (33)
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REMARK 3.5. The problems (22) and (29) are the most time-consuming parts of
the suggested method. For the solution of the problem (22) one can use Wolfe’s
terminating algorithm (see Wolfe, 1976). The problem (29) is solved effectively
when the set dµf (x) is a polyhedron described by its vertices. In this case it is
sufficiently to solve this problem for vertices of the polyhedron.

REMARK 3.6. It is clear from (27) that the direction xk+1 − xk may happen not
to be a descent direction (in this direction the function may first increase and then
decrease, i.e. the algorithm allows to ‘jump over’ some points of local minima).

4. Numerical experiments

In order to verify the practical efficiency of the proposed algorithm a number of
numerical experiments have been carried out. In this section we describe results
of these experiments. We consider only unconstrained problems with DC objective
functions.

The following notation will be used for the description of the test problems:

• f = f (x) is the objective function,
• n is the number of variables,
• x0 is a starting point,
• x∗ is a local minimizer, f∗ = f (x∗).

PROBLEM 4.1.

f (x) =max

{
n∑
i=1

aij (bixi − 1)2 : j = 1, ...m

}

+ min

{
n∑
i=1

aij (bixi − 1)2 : j = 1, ...m

}
,

x ∈ R
n, aij = 1/(i + j − 1), i = 1, ...n, j = 1, ..., m, bi = i, i = 1, ..., n,

x0 = (5, ..., 5), x∗ = (1, 1/2, ..., 1/n) ∈ R
n, f∗ = 0.

PROBLEM 4.2.

f (x) =max


exp


 n∑

j=1

aij xj (xj + 1)


 : i = 1, ..., 60




+ min


exp


 n∑

j=1

bij xj (xj + 1)


 : i = 1, ..., 60


 ,
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x ∈ R
n, aij = 1/2(i + j − 1), i = 1, ..., 30, j = 1, ..., n,

aij = −1/2(i + j − 1),

i = 31, ..., 60, j = 1, ..., n, bij = aij /2, i = 1, ..., 60, j = 1, ..., n,

x0 = (1, . . . , 1), x∗ = (0, ..., 0), f∗ = 2.

PROBLEM 4.3.

f (x) = n max{|xi| : i = 1, ..., n} −
n∑
i=1

|xi |,

x ∈ R
n, x0 = (i, i = 1, ..., ]n/2[, − i, i =]n/2[+1, ..., n), x∗ = (α, ..., α),

α ∈ R
1, f∗ = 0.

PROBLEM 4.4.

f (x) =
100∑
j=1

∣∣∣∣∣
n∑
i=1

(xi − x∗
i )t

i−1
j

∣∣∣∣∣
− max

{∣∣∣∣∣
n∑
i=1

(xi − x∗
i )t

i−1
j

∣∣∣∣∣ : j = 1, ..., 100

}
,

x ∈ R
n, tj = 0.01j, j = 1, ..., 100, x0 = (0, ..., 0),

x∗ = (1/n, ..., 1/n), f∗ = 0.

It should be noted that in Problem 4.1 ∂f (x∗) = ∂f (x∗) = {0}, whereas in
Problems 4.2, 4.3 and 4.4 ∂f (x∗) �= {0}, ∂f (x∗) �= {0}.

In Problems 4.1 and 4.2 we compute the complete codifferentials, whereas in
Problems 4.3 and 4.4 – only truncated codifferentials. In latter case for Problem
4.3 we took ε = 0.1 and for Problem 4.4 ε = 0.001 ÷ 0.0001. For all problems µ
is chosen as µ = 0.0001. For the compution of the stepsize we use the Armijo rule
(33). We took the following values of the parameters c and σ : c = 0.01, σ = 0.6.
It should be noted that for all problems and n we use the same values of µ, c and σ .
Taking them different for different problems and n we can get more better results.
For the solution of the problem (22) we use Wolfe’s method (Wolfe, 1976). We
solved all problems with the precision 10−4, that is we computed a point x for
which

f (x) − f∗ � 10−4.

Numerical experiments have been carried out on an IBM Pentium-S with CPU
150 MHz. Their results are given in Table 1. For the description of these results we
use the following notations:
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Table 1.

N n m1 m2 t N n m1 m2 t

1 5 78 87 0.17 3 5 64 339 0.05

1 10 138 293 0.49 3 10 94 557 0.28

1 20 239 856 1.60 3 15 163 1065 1.19

1 30 484 2200 5.11 3 20 162 1004 3.57

1 40 884 6725 15.11 3 30 198 556 18.23

1 50 2207 13445 41.47 3 40 255 619 39.33

1 70 1785 11570 47.35 3 50 283 811 104.47

2 5 31 50 0.11 4 5 188 548 1.65

2 10 70 84 0.33 4 10 126 607 6.48

2 20 122 125 1.04 4 15 191 784 19.56

2 30 59 88 0.83 4 20 460 2969 34.49

2 40 140 179 2.80 4 30 498 3125 109.36

2 50 66 115 1.43 4 40 464 2836 156.42

2 70 86 117 2.59 4 50 751 6709 281.66

• N is the number of problem,
• n is the number of variables,
• m1 is number of iterations,
• m2 is number of function evaluations,
• t is the computation time (in s).

The number of computation of complete or truncated codifferential is the same
as the number of iterations m1 so we do not give it.

The following example demonstrates that the algorithm allows to ‘jump over’
some points of local minima. Let

f (x) = min{max{−x1 − 2x2 + 4, 2x1 + 4x2 − 5},
max{−2x1 − x2 + 21, 6x1 + 3x2 − 15}}.

This function can be represented as the difference of two convex functions:

f (x) = f1(x) − f2(x)

where

f1(x) = max{−x1 − 2x2 + 4, 2x1 + 4x2 − 5}
+ max{−2x1 − x2 + 21, 6x1 + 3x2 − 15},

f2(x) = max{−x1 − 2x2 + 4, 2x1 + 4x2 − 5,−2x1

− x2 + 21, 6x1 + 3x2 − 15}.
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Table 2.

k x1 x2 f (x) µ

0 3.100 3.100 12.900

1 2.976 3.038 12.010 0.01

2 2.976 3.038 12.010 0.01

3 2.976 3.038 12.010 0.01

4 2.976 3.038 12.010 0.01

5 2.976 3.038 12.010 0.02

6 2.976 3.038 12.010 0.04

7 2.976 3.038 12.010 0.08

8 2.976 3.038 12.010 0.16

9 2.976 3.038 12.009 0.32

10 2.976 3.038 12.009 0.64

11 1.104 −0.707 4.310 1.28

12 1.907 0.900 2.414 0.01

15 1.734 0.553 1.160 0.01

20 1.750 0.586 1.077 0.01

89 1.764 0.613 1.010 0.01

The function f has two sets of minimum points:

X∗
1 = {x = (x1, x2) ∈ R

2 | x1 + 2x2 = 3},
X∗

2 = {x = (x1, x2) ∈ R
2 | 2x1 + x2 = 9}.

f (x) = 1 for all x ∈ X∗
1 and f (x) = 12 for all x ∈ X∗

2 . Thus the set X∗
1 is the set

of global minimizers of the function f over R
2.

In Table 2 we give the results of numerical experiments where the value µ =
1.28 allowed to jump over a local minimum point.

5. Clustering via codifferentiability

One of the basic problems of data mining is the following clustering problem: for
a given set of points ai, i = 1, . . . , m in R

n, find cluster centers xl, l = 1, . . . , p
in R

n such that the sum of the minima over l ∈ {1, . . . , p} of the distance between
each point ai and the cluster centers xl, l = 1, . . . , p is minimized. The problem
we are concerned with is

f (x) =
m∑
i=1

min
l=1,... ,p

‖xl − ai‖ → min s.t. xl ∈ S ⊂ R
n, l = 1, . . . , p (34)

where S is a compact convex set in R
n.
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The objective function in (34) can be represented as the difference of two convex
functions:

f (x) =
m∑
i=1

p∑
l=1

‖xl − ai‖ −
m∑
i=1

max
r

∑
l �=r

‖xl − ai‖.

In the case p = 2 the objective function is the simplest:

f (x) =
m∑
i=1

(‖x1 − ai‖ + ‖x2 − ai‖) −
m∑
i=1

max{‖x1 − ai‖, ‖x2 − ai‖}.

We conclude that the objective function f in (34) is codifferentiable and in the
latter case we can construct its truncated codifferential. Thus for solving cluster-
ing analysis problems we can use the method of truncated codifferential descent
described above.

It has been applied to analyse the Wisconsin Diagnostic Breast Cancer database.
This database consists of 569 vectors with known outcomes and it represents a
training set with which a classifier can be constructed to diagnose future examples.
It was created by W.H. Wolberg, General Surgery Dept., University of Wisconsin,
Clinical Sciences Center, W. N. Street and O.L. Mangasarian, Computer Sciences
Dept., University of Wisconsin.

Ten real-valued features are computed for each cell nucleus: radius (mean of
distances from center to points on the perimeter), texture (standard deviation of
gray-scale values), perimeter, area, smoothness (local variation in radius lengths),
compactness, concavity (severity of concave portions of the contour), concave
points (number of concave portions of the contour), symmetry, fractal dimension
(of the boundary). The mean value, standard error and extreme value (i.e., largest
or worst value: biggest size, most irregular shape) of each of these cellular features
are computed for each image, resulting in a total of 30 real-valued features. Thus
n = 30 in the case under consideration. The papers (Wolberg et al., 1994, 1995a–c)
contain more detailed description of this database. Some approaches based on lin-
ear and bilinear programming techniques are considered in papers (Mangasarian,
1997; Mangasarian et al., 1995).

The first set consists of vectors related to benign cases and contains 357 vec-
tors; the second set consists of vectors related to malignant cases and contains 212
vectors.

By applying the algorithm and using only first 10 parameters (mean values)
we computed two clusters for both sets of vectors. We took 80% of all vectors
as a traing set and remaining 20% of vectors were used for testing the obtained
clusters. The numerical experiments show that the algorithm found two clusters
for each set which describe all vectors with 96.5% accuracy (97.2% for benigns
and with 92.5% for malignants accuracy.)

In the numerical experiments we considered the 1-norm, the 2-norm and the
max-norm. Best result we obtained using the 1-norm. Results with the 2-norm were



78 V.F. DEMYANOV ET AL.

close enough to the results obtained by means of the 1-norm. Clusters obtained by
means of the max-norm did not give a good description of both sets.

REMARK 5.1. If centres of clusters are known, we can try to find clusters them-
selves, or, at least, a part of each cluster and then to compare distances to clusters
(parts of clusters) instead of distances to centers of clusters. Thus, the following
two step approach can be considered. First, to find clusters (part of clusters), using
known centres of clusters. Second, to define a sort of the point by comparison
of distances from this point to clusters (part of clusters). Of course this is only
a heuristic idea. Indeed, since our method is based on calculation of distances to
points, we should determine a sort of a point by comparison distances from this
point to the centres of clusters. However, in some instances this idea demonstrates
good results. For example, for the database under consideration usage this idea
allows one to improve the description of the sets 1–2%.

6. Conclusions

In this paper we have studied a numerical algorithm for solving unconstrained
problems of nonsmooth optimization with quasidifferentiable objective functions
based on the truncated codifferential mapping. Some numerical experiments have
been carried out using this method. In these experiments test problems with the
objective functions represented as the difference of two convex functions were
used. The results of numerical experiments show the effectiveness of the suggested
method. The presented example shows that this method sometimes allows to jump
over local minimum points and to find a global one. At the same time we cannot
assert that it allows always to find a global solution of the optimization problem
under consideration.

This method has been applied to the solution of one cluster analysis problem.
The clusters obtained describe quite well the sets under consideration and we
can conclude that this method solves such a problem effectively if the number
of clusters is not large.

Acknowledgements

We would like to thank the anonymous referee for valuable comments. This re-
search has been supported by the Australian Research Council under Grant No.
A49906152. This work has been completed when V.F. Demyanov visited School of
Information Technology and Mathematical Sciences, University of Ballarat, Aus-
tralia. V.F. Demyanov was also partially supported by the Russian Foundation for
Fundamental Studies under the grant RFFI No. 97-01-00499.



A METHOD OF TRUNCATED CODIFFERENTIAL . . . . . . . 79

References

Andramonov, M. Yu., Rubinov, A.M. and Glover, B. M. (1999), Cutting angle methods in global
optimization, Applied Mathematics Letters 12: 95–100.

Armijo, L. (1966), Minimization of functions having continuous partial derivatives, Pacific J. Math.
16: 1–13.

Bagirov, A.M. (2000), Numerical methods for minimizing quasidifferentiable functions: a survey and
comparison, In: Quasidifferentiability and Related Topics, Demyanov, V.F. and Rubinov, A.M.
(eds.), Ser.: Nonconvex Optimization and Its Applications, Vol. 43, 33–71, Kluwer Academic
Publishers, Dordrecht.

Bagirov, A.M. and Rubinov, A.M. (2000), Global minimization of increasing positively homogen-
eous functions over the unit simplex, Annals of Operations Research 98: 171–187.

Bagirov, A.M., Rubinov, A. M., Stranieri, A. and Yearwood, J. (1999), The global optimization
approach to the clustering analysis, Research Report 45/99, University of Ballarat, Australia.

Demyanov, V.F., Gamidov, S. and Sivelina, T.I. (1986), An algorithm for minimizing a certain class
of quasidifferentiable functions, Math. Program. Study 29: 74–85.

Demyanov, V.F. and Rubinov, A.M. (1990), Foundations of Nonsmooth Analysis and Quasidifferen-
tial Calculus, Nauka, Moscow (in Russian)

Demyanov, V.F. and Rubinov, A.M. (1995), Constructive Nonsmooth Analysis, Springer, Frankfurt
am Main.

Demyanov, V.F., Stavroulakis, G.E., Polyakova, L.N. and Panagiotopoulos, P.D. (1996), Quasid-
ifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics, Kluwer
Academic Publishers, Dordrecht.

Hiriart-Urruty, J.-B. (1989), From convex optimization to nonconvex optimization. Necessary and
sufficient conditions for global optimality, In: Clarke F.H., Demyanov V.F. and Gianessi F. (eds.),
Nonsmooth Optimization and Related Topics, Plenum Publ., New York, 219-239.

Hiriart-Urruty, J.B. and Lemarechal, C. (1993a), Convex Analysis and Minimization Algorithms,
Springer, Heidelberg, Vol. 1.

Hiriart-Urruty, J.B. and Lemarechal, C. (1993b), Convex Analysis and Minimization Algorithms,
Springer, New York, Vol. 2.

Kiwiel, K.C. (1986), A linearization method for minimizing certain quasidifferentiable functions,
Math. Program. Study 29: 86–94.

Mangasarian, O.L. (1997), Mathematical programming in data mining, Data Mining and Knowledge
Discovery 1: 183–201.

Mangasarian, O.L., Street, W.N. and Wolberg, W.H. (1995), Breast cancer diagnosis and prognosis
via linear programming, Operations Research 43(4): 570–577.

Polak, E., Mayne, D.Q. and Wardi, Y. (1983), On the extension of constrained optimization al-
gorithms from differentiable to nondifferentiable problems, SIAM J. Control and Optimization
21(2): 179–203.

Polak, E. and Mayne, D.Q. (1985), Algorithm models for nondifferentiable optimization, SIAM J.
Control and Optimization 23(3): 477–491.

Tuy, H., (1998), Convex Analysis and Global Optimization, Kluwer Academic Publishers, Dordrecht.
Wolberg, W.H., Street, W.N. and Mangasarian, O.L. (1994), Machine learning techniques to diagnose

breast cancer from fine-needle aspirates, Cancer Letters 77: 163–171.
Wolberg, W.H., Street, W.N. and Mangasarian, O.L. (1995a), Image analysis and machine learn-

ing applied to breast cancer diagnosis and prognosis, Analytical and Quantitative Cytology and
Histology 17(2): 77–87.

Wolberg, W.H., Street, W.N., Heisey, D.M. and Mangasarian, O.L. (1995b), Computerized breast
cancer diagnosis and prognosis from fine needle aspirates, Archives of Surgery 130: 511–516.



80 V.F. DEMYANOV ET AL.

Wolberg, W.H., Street, W.N., Heisey, D.M. and Mangasarian, O.L. (1995c), Computer-derived
nuclear features distinguish malignant from benign breast cytology, Human Pathology 26:
792–796.

Wolfe, P.H. (1976), Finding the nearest point in a polytope. Math. Programm. 11(2): 128–149.


